Mochizuki’s indigenous bundles and Ehrhart polynomials
نویسندگان
چکیده
Mochizuki’s work on torally indigenous bundles [1] yields combinatorial identities by degenerating to different curves of the same genus. We rephrase these identities in combinatorial language and strengthen them, giving relations between Ehrhart quasi-polynomials of different polytopes. We then apply the theory of Ehrhart quasi-polynomials to conclude that the number of dormant torally indigenous bundles on a general curve of a given type is expressed as a polynomial in the characteristic of the base field. In particular, we conclude the same for the number vector bundles of rank two and trivial determinant whose Frobenius-pullbacks are maximally unstable, as well as self-maps of the projective line with prescribed ramification.
منابع مشابه
Mochizuki’s Crys-stable Bundles: a Lexicon and Applications
Mochizuki’s work on torally crys-stable bundles [9] has extensive implications for the theory of logarithmic connections on vector bundles of rank 2 on curves, once the language is translated appropriately. We describe how to carry out this translation, and give two classes of applications: first, one can conclude almost immediately certain results classifying Frobenius-unstable vector bundles ...
متن کاملCoefficients and Roots of Ehrhart Polynomials
The Ehrhart polynomial of a convex lattice polytope counts integer points in integral dilates of the polytope. We present new linear inequalities satisfied by the coefficients of Ehrhart polynomials and relate them to known inequalities. We also investigate the roots of Ehrhart polynomials. We prove that for fixed d, there exists a bounded region of C containing all roots of Ehrhart polynomials...
متن کاملRoots of Ehrhart Polynomials and Symmetric Δ-vectors
Abstract. The conjecture on roots of Ehrhart polynomials, stated by Matsui et al. [15, Conjecture 4.10], says that all roots α of the Ehrhart polynomial of a Gorenstein Fano polytope of dimension d satisfy − d 2 ≤ Re(α) ≤ d 2 − 1. In this paper, we observe the behaviors of roots of SSNN polynomials which are a wider class of the polynomials containing all the Ehrhart polynomials of Gorenstein F...
متن کاملq-analogues of Ehrhart polynomials
One considers weighted sums over points of lattice polytopes, where the weight of a point v is the monomial q for some linear form λ. One proposes a q-analogue of the classical theory of Ehrhart series and Ehrhart polynomials, including Ehrhart reciprocity and involving evaluation at the q-integers.
متن کاملEhrhart Polynomials of Matroid Polytopes and Polymatroids
We investigate properties of Ehrhart polynomials for matroid polytopes, independence matroid polytopes, and polymatroids. In the first half of the paper we prove that for fixed rank their Ehrhart polynomials are computable in polynomial time. The proof relies on the geometry of these polytopes as well as a new refined analysis of the evaluation of Todd polynomials. In the second half we discuss...
متن کامل